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Synopsis 
Numerical methods for the solution of Tung's axial dispersion equation have been 

developed and comprehensively evaluated. These methods are general and can be rtp- 
plied where the instrumental spreading function is unsymmetrical and nonuniform. 
Computation times required are comparable to  those of the method of Chang and 
Huang being about 10 sec per case on the CDC6400 computer. Memory requirements 
are minimal and this should permit their use with minicomputers for data acquisition 
and processing. 

INTRODUCTION 

I n  gel permeation chromatography, the elimination of axial dispersion 
from the permeation process is almost impossible experimentally. There- 
fore, the GPC elution curve must be corrected for axial dispersion to obtain 
true molecular weight distribution and molecular weight averages. 

When axial dispersion is taken into account, the GPC response F(v)  to an 
input sample W ( y )  is given by the following integral equation after 
Tung :l 

F(v)  = JWrnrn W(Y) W J , Y )  d!/ (1) 

where G(v,y) is called the instrumental spreading function and accounts for 
the total axial dispersion. It is the response for a unit input of a monodis- 
persed polymer sample. Often, the function C: has been approximated by a 
Gaussian distribution: 

G(v,y) = (h/r)*'' exp{ -h(v - Y ) ~ ) .  (2) 

The above simple analytical form of G permits various analytical treatments 
of eq. (1) for example, Fourier transformation. Several methods have 
been proposed by T ~ n g , l - ~  Pierce and A r m o n a ~ , ~  and Hamielec and Ray6 
to obtain W ( y )  or its moments from a knowledge of F(v).  A correction for 
nonsymmetrical axial dispersion has been attempted by Hess and Kratz,' 
Smith,8 Pickett et al.,9 Balke and Hamielec,lo and Provder and Rosen." 
Recently, Chang and Huang12 developed a very effective search method for 
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obtaining W(y). This method assumes a symmetrical and uniform G func- 
tion. Uniform G is one whose shape parameters (p2,p3, . . . ) are independ- 
dent of y and can be expressed as G(v - y). However, these methods 
have certain limitations. These are associated with nonuniform spreading 
functions, large resolution corrections, narrow chromatograms, and exces- 
sive computer storage and computation time. 

I n  the present investigation, we have developed new iterative methods 
which overcome many of the aforementioned difficulties. We have chosen 
the method proposed by Chang and Huang (second-order method) as a most 
promising one for the numerical solution of Tung's axial dispersion equation 
and compared its performance with our iterative methods. The method of 
Chang and Huang has been shown12 to give excellent recoveries of W(y), 
and it has the added advantages of small computation time and storage. 
The disadvantage is its limitation to symmetrical instrumental spreading 
functions. 

THEORY 
The development of our iterative methods will be given in chronological 

order, first the development of our method 1, followed by method 2.  

Method 1 
I n  order to simplify the formulation, we denote eq. (1) by 

F(v)  = G(WY)} (3) 

where G{ Instead of attempting the ap- 
proach of developing an inverse operation such that G-'(F} = W ,  let us 
operate with G(  

] is the integration operator. 

} on F and take the difference from F itself: 

AF1 = F - G ( F ) .  (4) 
Repeat the above for MI: 

A F ~  = AFi - G{AFi}. 

Figures 1 and 2 illustrate the operations given by eqs. (4) and ( 5 ) .  For the 
i th  operation we have 

Fig. 1. AF1 = F - G[F]. 
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Q&, 1 

Fig. 2. AFP = AF - G[AFI]. 

A F i  = AFi-l - G(AFi-~).  (6) 

Now, sum up eq. (6) from i = 1 to N ,  denoting F by AFo for convenience: 
N - 1  

i = O  
F = C G(AF,) + A F N  (7) 

When the instrumental spreading is linear, i.e., by doubling an input the 
output is doubled, the order of summation and G-operation is interchange- 
able : 

Therefore it follows that 
N - 1  

i = O  
F = G f C  AFi )  + AFN. (9) 

Now, by defining 
i 

2 = 0  
W ,  = C A F t  (10) 

(11) 
we obtain 

F = G(WN-I) + AFN. 

This equation indicates that W ,  can be the solution for eq. (1) if AF, con- 
verges uniformly to zero as N - a. 

It should be aoted that the above operation may result in a W(y) with 
small negative values when the iteration is stopped at a certain stage. To 
overcome this difficulty, the iterative procedure is changed to use the height, 
ratio of F and F, rather than their difference. This is now- described under 
method 2. 

Method 2 

This method uses the fact that any GPC response F always has a broader 
distribution than the input distribution W.  Hence, if a distribution Fi is 
broader than F ,  the assumed W ,  must be sharpened to give tt response closer 
to F. Using W ,  arid Fi, we introduce the (i + 1)th guess as follows: 

w:+1= (g) wi 



1610 ISHIGE, LEE, AND HAMIELEC 

Fig. 3. Direction of correction by method 2. 

This is equivalent to giving a correction AW, on W j  such that 

It is necessary to normalize w:+I: 

Wi+i = N(w:+l] 
where N{ 
The initial guess WI was started from F itself. 
operation. 

it is possible that (F  - F,) may not converge to zero in some cases. 

] is an integration operator normalizing with respect to area. 
Figure 3 illustrates the 

The above correction can never yield a negative value in Wi+l; however, 

EVALUATION OF METHODS 1 AND 2 AND 
COMPARISON WITH THE METHOD OF CHANG AND HUANG 

Experimental GPC chromatograms with a precisely known instrumental 
spreading function are not available. Since it is essential to use an exact 
form of G(v,y) to evaluate correction methods, synthesized F ( v )  curves were 
used. 

Six different F(v )  were synthesized from two kinds of hypothetical W(y), 
one having three peaks and another having two peaks and a shoulder. This 

The evaluation routine is illustrated in Figure 4. 
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latter one was used by Chang and Huang for their evaluation. The ap- 
proximate shape of these W(y) and F(v )  curves are shown in the first two 
rows of Table I. A Gaussian and a skewed shape was employed as examples 
of instrumental spreading functions. 

Starting from a known set of F(v )  and G(v,y), the W(y) were recovered by 
method 1, method 2, and by the method of Chang and Huang. Table I 
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Fig. 4. Evaluation routine. 

summarizes the comparison of corrected M,, M,, and M ,  by each of the 
methods. 

The max- 
imum number of figures used was four. I n  later evaluations, the last figure 
in the above was truncated, i.e., F(v)  had three significant figures a t  most. 
Table I1 lists this latter F(v )  for Gaussian spreading with h = 0.5. The re- 
coveries from the less accurate F(v)  are compared with the first case. The 
figures in parentheses in Table I show corrected M,, M,, and M ,  values 
for the less accurate F(v) .  

The heights of the synthesized F(v )  were truncated before use. 
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TABLE I1 
Numerical Values of F ( v )  Used in Case 1A arid Case 2Aa 

Case 1A Case 2A 

V F ( v )  V F ( v )  V F ( v )  V F ( v )  

23.0 
23.2 
23.4 
23.6 
23.8 
24.0 
24.2 
24.4 
24.6 
24.8 
25.0 
25.2 
25.4 
25.6 
25.8 
26.0 
26.2 
26.4 
26.6 
26.8 
27.0 
27.2 
27.4 
27.6 
27.8 
28.0 
28.2 
28.4 
28.6 
28.8 
29.0 
29.2 
29.4 
29.6 
29.8 

0 30.0 120 
0 30.2 121 
0 30.4 120 
1 30.6 120 
1 30.8 121 
2 31.0 122 
3 31.2 123 
3 31.4 131 
7 31.6 137 

10 31.8 145 
14 32.0 1.53 
18 32.2 160 
22 32.4 165 
27 32.6 168 
32 32.8 168 
38 33.0 164 
43 33.2 136 
47 33.4 14.5 
5 1 33.6 132 
54 33.8 I17 
57 34.0 101 
59 34.2 84 
61 34.4 69 
63 34.6 5 5 
65 34.8 42 
69 35.0 32 
73 35.2 23 
79 35.4 17 
85 35.6 11 
92 35.8 8 
99 36.0 5 

106 36.2 3 
112 36.4 2 
116 36.6 I 
119 36.8 0 

16.0 0 23.0 93 
16.2 0 23.2 98 
16.4 0 23.4 101 
16.6 0 23.6 102 
16.8 0 23.8 103 
17.0 0 24.0 102 
17.2 1 24.2 100 
17.4 1 24.4 96 
17.6 1 24.6 92 
17.8 2 24.8 87 
18.0 2 25.0 81 
18.2 2 25.2 74 
18.4 3 2.5.4 67 
18.6 4 2L. 6 60 
18.8 4 25.8 52 
19.0 A 26.0 4.5 
19.2 6 26.2 38 
19.4 7 26.4 32 
19.6 8 26.6 27 
19.8 10 26.8 22 
20.0 12 27.0 1% 
20.2 14 27.2 14 
20.4 17 27.4 12 
20.6 20 27.6 9 
20.8 24 27.8 8 
21.0 29 28.0 6 
21.2 34 28.2 5 
21.4 39 28.4 4 
21.6 46 28.6 3 
21.8 53 28.8 3 
22.0 60 29.0 2 
22.2 67 29.2 2 
22.4 73 29.4 1 
22.6 H2 29.6 1 
22.8 88 29.8 1 

30.0 0 

a Retention volume v in counts and F ( v )  not normalized. 

A linear calibration curve, log,,-, M = (46.0 - v)/4.0, was used to obtain 
M,(t), M,(t) ,  and M,(t) analytically from uncorrected values M,( a), 
M,( OD ), and M,( OD ). A step size of 0.2 count was used for all the examples 
shown in Table I. This step is sufficient to obtain M ,  to *0.5y0 for the 
present examples. When the analytical solution is not applicable, M,, M,, 
and M ,  directly computed from the assumed W(y) are considered true val- 
ues. The differences between molecular weight averages obtained using 
the analytical solution and W(y) directly are mainly due to errors in synthe- 
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sis and truncation of F(v) .  
ferences are not significant. 

following tolerance was satisfied: 

When the resolution factor h is large, these dif- 

The iteration in each of the correction methods was carried out until the 

AX = ( F ( v )  - F,(v)ldv 5 0.01. 

This corresponds to the area difference between the two chromatograms of 
less than 1% of the total area under F ( v ) .  In  the case where repeated itera- 
tions failed to decrease AS but rather gave an oscillation i n  AS without 
satisfying the tolerance, the iteration was stopped when the first minimum 
in A S  was obtained. 

Cases 1A and 2A: Gaussian Spreading Functionwith h = 0.5 

These are examples of a symmetrical and uniform instrumental spreading 
For a resolution factor of h = 0.5, the corrections to M,, M,, 

The recovered W(y) curves for case 1A by the three methods are com- 
All the methods gave a good 

function. 
and M ,  are about 15%, 20%, and SOY0, respectively. 

pared with the original W(y) in Figure 5. 

Retention volume (counts) 

Fig. 5.  Recovery of W(y), case 1A ( h  = 0.5): (--) original W(y); (- - -) P(v ) ;  (0) 
method 1; (A) method 2; (+) method of Charig and Huang. 



1616 ISHIGE, LEE, AfiD HAMIELEC 

smooth recovery except for somewhat blunt peaks and small fluctuations at  
both ends of the chromatogram. 

Method 1 and method 2 gave corrected M ,  and M, to within =k2% of 
their true values, arid the method of Chang and Huang gave them to within 
f 5y0. As for corrected M,, the first two methods gave -5% larger values 
than the true one while the latter method gave an -80% error. 

Reduction of the accuracy in reading F(v )  to a maximum of three figures 
still resulted in a good recovery of the original W(y) values similar to those 
shown in Figure 5 .  The errors in corrected M ,  and M ,  also remained about 

.3 

v .2 2 
c 
* 
8 
.r - 
z E 

.I 

0 
Y 16 18 20 2 2  24 26 28 30 32 34 

Retention volume (counts) 

Fig. 6. Recovery of W(y), case 2A ( h  = 0.5): (-) original W(y); ( - - - )  F ( v ) ;  (0) 
method 1; (A) method 2 ;  (+) method of Chang and Huang. 

the same as before. However, the error in the corrected M ,  increased to 
-35% for method 1, to -10% for method 2, and to -lOOyo for the 
method of Chang and Huang. 

Neither 
of the methods could recover a W(y) with two peaks. Increased number of 
iterations with a smaller tolerance (AS 5 0.0025) resulted in slightly better 
recoveries, with the second peak recovered as a shoulder in all three methods. 
The reduction of the step size for the whole evaluation routine from 0.2 to 
0.1 count did not give any significant improvement. The values of the cor- 
rected M ,  and AT, were still within *2%. The method of Chang and 
Huang gave these to within f 10%. The corrected M z x  however, differed 
significantly from the true value. The best M ,  obtained was -20% in 

Figure 6 shows the comparison of the recoveries for case 2A. 
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error; this was by method 2. When F ( v )  was truncated still further by one 
figure, all three methods gave oscillations in the main portion of the recov- 
ered W(y). The method of Chang and Huang gave an oscillation in the 
value of AS from the beginning and could not satisfy the tolerance despite 
their data smoothing process before the iteration procedure. However, 
once more the corrected M ,  and M ,  of the three methods are reasonable 
even though the recovered W(y) appears to be significantly different from 
the true W(y). 

Cases 1B and 2B: Gaussian Spreading Functionwith h = 0.2 

A set of GPC columns having a Gaussian spreading function with an h 
value as low as 0.2 may be considered unsatisfactory. However, if the 
slope of the molecular weight calibration curve is small, this column set may 
give satisfactory separations. The use of a small resolution factor provides 
a much more difficult test for any numerical method of recovering W(y). 

Although the recover- 
ies were smooth and the peaks were shown to exist, the recovery of W(y) as a 

Recovered W(y) for case 1B is shown in Figure 7. 

.3 

.2 
Y .c m 

.r 
10 

.r 

z 
e 
.- - 
n 

= 

.1 

A 

Retenti on volume( coun t s  1 

Fig. 7. Recovery of W(u),  case 1B (h = 0.2): (-) original W(y), ( - - - )  F ( v ) ;  (0) 
method 1; (A) method 2; (+) method of Chang and Huang. 
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whole was rather poor. The method of Chang and Huang gave a slightly 
better recovery than the other two methods; however, this advantage was 
lost when corrected M ,  and M ,  were compared. Methods 1 and 2 gave 
smaller errors in M,(-3y0) and Mw(-5y0). Only method 2 gave M z  
within a -20Y0 error. A significant improvement was observed in the re- 
covered W(y) by all three methods when the iteration was continued until a 
smaller tolerance A S  5 0.0025 was satisfied. The magnitude of recovered 
peaks in this case was much closer to the original ones. 

The recoveries for case 2B were about the same as for case 2A. No signifi- 
cant difference in the three methods were observed. Two peaks were not 
detected in the recovered W(y), since with a higher resolution (h  = 0.5), 
neither method could show their existence. Methods 1 and 2 again gave 
smaller errors in M,(-3yO) and M,(-5yo) than the method of Chang and 
Huang. It can be seen that the recovered M ,  by method 1 is out of the ball 
park for both cases 1B and 2B. Method 2 gave the smallest errors in M ,  
for both cases. 

Only method 1 could reach A S  5 0.01 when the accuracy in reading F ( v )  
was reduced one digit. But corrected M ,  and M ,  by this method were not 

.3 I 

22 24 26 28 30 32 34 36 38 

Retention volume (counts) 

Fig. 8. liecovery of W(y), case 1C (avriable h ) :  (-) original W(y; ( - - - )  P ( v ; ;  
(0) method 1; (A) method 2. 
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any better than those of the other two methods in this instance. 
tions in the recovered W(y) were found for all three methods. 

Oscilla- 

Case 1C : Gaussian Spreading Function with Variable h. 

This is an example of an instrumental spreading function which is sym- 
metrical but nonuniform. For the case of nonuniform G, neither the 
analytical solution nor the method of Chang and Huang apply. The 
change of h with respect to input species was given by the following quadra- 
tic equation: 

h = 4.879 - 0 .373~  + 0 . 0 0 8 ~ ~  

This gives h values from 0.5 to 1.5 in the retention volume range of the given 
F(v) .  Uncorrected M,, M,, and M ,  show about 10, 20, and 60% deviation 
from their true values in this example. 

Good recoveries of W(y) by both method 1 and method 2 can be seen in 
Figure 8. Corrected M ,  and M ,  differ only by -2% from the true ones, 
and M ,  differs by -5%. A reduction of the reading accuracy of F(v)  did 
not affect the recovery of W(y) and the corrected molecular weight averages. 

Case 1D : General Instrumental Spreading Function1l,lo 
with h = 0.5 and p3 = 1.0 

This gives an example of a nonsymmetrical, uniform spreading function. 
Only the two shape parameters h and p3 were used with the remaining ones 
set equal to zero. The combination of h = 0.5 and p3 = 1.0 gives a spread- 
ing function significantly skewed toward higher retention volumes. Be- 
cause the two-parameter expression in the general spreading function is es- 
sentially a cubic function, small negative values appear a t  about 2.5 counts 
from its peak position. These negative portions were set to zero, and the 
shape was normalized for use in the F ( v )  synthesis and with the correction 
methods. Deviation of uncorrected M,, M,, and M ,  from the true values 
were nearly the same as with case 1A where a Gaussian spreading function 
with h = 0.5 was used. 

The shape 
recovered seems slightly poorer than for case lA,  with the recovered peaks 
sharper than the true ones. Corrected M ,  and M ,  had errors within 
*5%. Corrected M ,  by method 1 was again out of the ball park, while 
method 2 gave a reasonable value (-loo/, error). When the F(v )  reading 
was reduced in accuracy by one digit, both methods gave oscillations in 
the main portion of the recovered W(y). Again, the corrected molecular 
weight averages seemed equally good as those obtained from a more ac- 
curate F ( v ) .  

Figure 9 compares the recovered W(y) with the original one. 

Computation Time 

Computation times required for method 1, method 2, and the method of 
It was found Chang and Huang are compared in Table 111 for four cases. 
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.3 

Retention volume (counts) 

Fig. 9. Recovery of W(y), case 1D ( k  = 0.5, p3 = 1.0): (--) original W(y); (-- -) 
F ( v ) ;  (0) method 1; (A) method 2. 

that the method of Chang and Huang and method 2 are approximately 
the same, while method 1 required more time due to its G-operation beyond 
the retention volume range of F(v) .  Fifty more zero data points on F ( v )  
were added to both ends of the chromatogram in the last case to enable iter- 
ative G-operations. In  each of the methods, the most time-consuming part 
is the multitude of G-operations necessary. However, the number of itera- 
tions to reach the specified tolerance does not directly represent the compu- 
tation time because of the differences in operation in each of the methods. 
The present tolerance A S  5 0.01 was found similar to the one recommended 

TABLE I11 
Comparisons of Computation Time and Number of Iterations" 

Case 1A Case 1B Case 2A Case 2B 

Method 1 14.9 (14) 17.5 (12) 10.5 (5) 15.8 (10) 
Method 2 9.6 (17) 21.5 (47) 7.3 (6) 9.3 (10) 
Method of Chang 

and Huang 7.2 (3) 18.0 (17) 7.0 (2) 6.7 (2) 

a CDC6400 Computer, with time in seconds. First value in columns shows time iii 
seconds; value in parentheses is the number of iteration to reach A S  < 0.01. 
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by Chang and Huang. This appeared reasonable in recovering W(y) and 
correcting M,, M,, and M ,  for a resolution factor h higher than 0.5; how- 
ever, it may be necessary to reduce it a t  lower resolution to obtain good re- 
coveries for differential distributions. 

The digital computer used for all of the calculations in this paper was the 
CDC6400. 

CONCLUSIONS 

Two numerical methods of solving Tung’s axial dispersion equation have 
been developed and evaluated. A simultaneous evaluation of the method 
of Chang and Huang was made. At the time of this investigation, their 
method appeared to be the most, promising one available in the literature. 
For all six different GPC responses investigated, none of the methods 
adequately recovered all of the corrected differential distributions. How- 
ever, the present method l and method 2 appear to work as well as the 
method of Chang and Huang where their method is applicable. Our two 
methods have wider applicability than the method of Chang and Huang. 
Since method 2 ensures positive W(y) and requires relatively shorter com- 
putation times than method 1, method 2 is recommended for the recovery 
of corrected differential distributions. However, the uniform convergence 
of A S  to zero by method 1 is a very desirable feature. 

A computer program, deck, and listing in FORTRAN IV will be provided 
upon request. There is a $50.00 service charge. Communications should 
be sent to one of the authors (A. E. H.). 

Nomenclature 

GPC output chromatogram 
GfF(Y)) 
F(v) 
AFi-i(v) - Gf AFi-i(y)) 
instrumental spreading function 
integral operator given by eq. (1) 
normalizing operator with respect to area 

area surrounded by two chromatograms F and F1,  1 IF(v) - 

F *(v) I dv 
molecular weight distribution in terms of molecular species y (re- 
tention volume) 
i th  guess for W(y) 
spreading parameters 
retention volume 

The authors wish to thank Imperial Oil Company Limited, Toronto, Canada, and 
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